'old/App'에 해당되는 글 4건

  1. 2010.02.04 <activity>__AndroidManifest.xml
  2. 2010.02.04 <action>__AndroidManifest.xml
  3. 2010.02.04 The AndroidManifest.xml File
  4. 2010.02.04 Application Fundamentals

<activity>

syntax:
<activity android:allowTaskReparenting=["true" | "false"] 
          android:alwaysRetainTaskState=["true" | "false"] 
          android:clearTaskOnLaunch=["true" | "false"] 
          android:configChanges=["mcc", "mnc", "locale", 
                                 "touchscreen", "keyboard", "keyboardHidden", 
                                 "navigation", "orientation", "fontScale"] 
          android:enabled=["true" | "false"] 
          android:excludeFromRecents=["true" | "false"] 
          android:exported=["true" | "false"] 
          android:finishOnTaskLaunch=["true" | "false"] 
          android:icon="drawable resource" 
          android:label="string resource" 
          android:launchMode=["multiple" | "singleTop" | 
                              "singleTask" | "singleInstance"] 
          android:multiprocess=["true" | "false"] 
          android:name="string" 
          android:noHistory=["true" | "false"]   
          android:permission="string" 
          android:process="string" 
          android:screenOrientation=["unspecified" | "user" | "behind" | 
                                     "landscape" | "portrait" | 
                                     "sensor" | "nosensor"] 
          android:stateNotNeeded=["true" | "false"] 
          android:taskAffinity="string" 
          android:theme="resource or theme" 
          android:windowSoftInputMode=["stateUnspecified", 
                                       "stateUnchanged", "stateHidden", 
                                       "stateAlwaysHidden", "stateVisible", 
                                       "stateAlwaysVisible", "adjustUnspecified", 
                                       "adjustResize", "adjustPan"] >    
    . . . 
</activity>
contained in:
<application>
can contain:
<intent-filter>
<meta-data>
description:
Declares an activity (an Activity subclass) that implements part of the application's visual user interface. All activities must be represented by <activity> elements in the manifest file. Any that are not declared there will not be seen by the system and will never be run.
attributes:
android:allowTaskReparenting
Whether or not the activity can move from the task that started it to the task it has an affinity for when that task is next brought to the front — "true" if it can move, and "false" if it must remain with the task where it started.

If this attribute is not set, the value set by the corresponding allowTaskReparenting attribute of the <application> element applies to the activity. The default value is "false".

Normally when an activity is started, it's associated with the task of the activity that started it and it stays there for its entire lifetime. You can use this attribute to force it to be re-parented to the task it has an affinity for when its current task is no longer displayed. Typically, it's used to cause the activities of an application to move to the main task associated with that application.

For example, if an e-mail message contains a link to a web page, clicking the link brings up an activity that can display the page. That activity is defined by the browser application, but is launched as part of the e-mail task. If it's reparented to the browser task, it will be shown when the browser next comes to the front, and will be absent when the e-mail task again comes forward.

The affinity of an activity is defined by the taskAffinity attribute. The affinity of a task is determined by reading the affinity of its root activity. Therefore, by definition, a root activity is always in a task with the same affinity. Since activities with "singleTask" or "singleInstance" launch modes can only be at the root of a task, re-parenting is limited to the "standard" and "singleTop" modes. (See also the launchMode attribute.)

android:alwaysRetainTaskState
Whether or not the state of the task that the activity is in will always be maintained by the system — "true" if it will be, and "false" if the system is allowed to reset the task to its initial state in certain situations. The default value is "false". This attribute is meaningful only for the root activity of a task; it's ignored for all other activities.

Normally, the system clears a task (removes all activities from the stack above the root activity) in certain situations when the user re-selects that task from the home screen. Typically, this is done if the user hasn't visited the task for a certain amount of time, such as 30 minutes.

However, when this attribute is "true", users will always return to the task in its last state, regardless of how they get there. This is useful, for example, in an application like the web browser where there is a lot of state (such as multiple open tabs) that users would not like to lose.

android:clearTaskOnLaunch
Whether or not all activities will be removed from the task, except for the root activity, whenever it is re-launched from the home screen — "true" if the task is always stripped down to its root activity, and "false" if not. The default value is "false". This attribute is meaningful only for activities that start a new task (the root activity); it's ignored for all other activities in the task.

When the value is "true", every time users start the task again, they are brought to its root activity, regardless of what they were last doing in the task and regardless of whether they used BACK or HOME to last leave it. When the value is "false", the task may be cleared of activities in some situations (see the alwaysRetainTaskState attribute), but not always.

Suppose, for example, that someone launches activity P from the home screen, and from there goes to activity Q. The user next presses HOME, and then returns to activity P. Normally, the user would see activity Q, since that is what they were last doing in P's task. However, if P set this flag to "true", all of the activities on top of it (Q in this case) were removed when the user pressed HOME and the task went to the background. So the user sees only P when returning to the task.

If this attribute and allowTaskReparenting are both "true", any activities that can be re-parented are moved to the task they share an affinity with; the remaining activities are then dropped, as described above.

android:configChanges
Lists configuration changes that the activity will handle itself. When changes that are not listed occur, the activity is shut down and restarted. When a listed change occurs, the activity remains running and its onConfigurationChanged() method is called.

Any or all of the following strings can be used to set this attribute. Values are separated by '|' — for example, "locale|navigation|orientation".

Value Description
"mcc" The IMSI mobile country code (MCC) has changed — that is, a SIM has been detected and updated the MCC.
"mnc" The IMSI mobile network code (MNC) has changed — that is, a SIM has been detected and updated the MNC.
"locale" The locale has changed — for example, the user has selected a new language that text should be displayed in.
"touchscreen" The touchscreen has changed. (This should never normally happen.)
"keyboard" The keyboard type has changed — for example, the user has plugged in an external keyboard.
"keyboardHidden" The keyboard accessibility has changed — for example, the user has slid the keyboard out to expose it.
"navigation" The navigation type has changed. (This should never normally happen.)
"orientation" The screen orientation has changed — that is, the user has rotated the device.
"fontScale" The font scaling factor has changed — that is, the user has selected a new global font size.

All of these configuration changes can impact the resource values seen by the application. Therefore, when onConfigurationChanged() is called, it will generally be necessary to again retrieve all resources (including view layouts, drawables, and so on) to correctly handle the change.

android:enabled
Whether or not the activity can be instantiated by the system — "true" if it can be, and "false" if not. The default value is "true".

The <application> element has its own enabled attribute that applies to all application components, including activities. The <application> and <activity> attributes must both be "true" (as they both are by default) for the system to be able to instantiate the activity. If either is "false", it cannot be instantiated.

android:excludeFromRecents
Whether or not the activity should be excluded from the list of recently launched activities that can be displayed to users — "true" if it should be excluded, and "false" if it should be included. The default value is "false".
android:exported
Whether or not the activity can be launched by components of other applications — "true" if it can be, and "false" if not. If "false", the activity can be launched only by components of the same application or applications with the same user ID.

The default value depends on whether the activity contains intent filters. The absence of any filters means that the activity can be invoked only by specifying its exact class name. This implies that the activity is intended only for application-internal use (since others would not know the class name). So in this case, the default value is "false". On the other hand, the presence of at least one filter implies that the activity is intended for external use, so the default value is "true".

This attribute is not the only way to limit an activity's exposure to other applications. You can also use a permission to limit the external entities that can invoke the activity (see the permission attribute).

android:finishOnTaskLaunch
Whether or not an existing instance of the activity should be shut down (finished) whenever the user again launches its task (chooses the task on the home screen) — "true" if it should be shut down, and "false" if not. The default value is "false".

If this attribute and allowTaskReparenting are both "true", this attribute trumps the other. The affinity of the activity is ignored. The activity is not re-parented, but destroyed.

android:icon
An icon representing the activity. The icon is displayed to users when a representation of the activity is required on-screen. For example, icons for activities that initiate tasks are displayed in the launcher window. The icon is often accompanied by a label (see the label attribute).

This attribute must be set as a reference to a drawable resource containing the image definition. If it is not set, the icon specified for the application as a whole is used instead (see the <application> element's icon attribute).

The activity's icon — whether set here or by the <application> element — is also the default icon for all the activity's intent filters (see the <intent-filter> element's icon attribute).

android:label
A user-readable label for the activity. The label is displayed on-screen when the activity must be represented to the user. It's often displayed along with the activity icon.

If this attribute is not set, the label set for the application as a whole is used instead (see the <application> element's label attribute).

The activity's label — whether set here or by the <application> element — is also the default label for all the activity's intent filters (see the <intent-filter> element's label attribute).

The label should be set as a reference to a string resource, so that it can be localized like other strings in the user interface. However, as a convenience while you're developing the application, it can also be set as a raw string.

android:launchMode
An instruction on how the activity should be launched. There are four modes that work in conjunction with activity flags (FLAG_ACTIVITY_* constants) in Intent objects to determine what should happen when the activity is called upon to handle an intent. They are:

"standard"
"singleTop"
"singleTask"
"singleInstance"

The default mode is "standard".

The modes fall into two main groups, with "standard" and "singleTop" activities on one side, and "singleTask" and "singleInstance" activities on the other. An activity with the "standard" or "singleTop" launch mode can be instantiated multiple times. The instances can belong to any task and can be located anywhere in the activity stack. Typically, they're launched into the task that called startActivity() (unless the Intent object contains a FLAG_ACTIVITY_NEW_TASK instruction, in which case a different task is chosen — see the taskAffinity attribute).

In contrast, "singleTask" and "singleInstance" activities can only begin a task. They are always at the root of the activity stack. Moreover, the device can hold only one instance of the activity at a time — only one such task.

The "standard" and "singleTop" modes differ from each other in just one respect: Every time there's new intent for a "standard" activity, a new instance of the class is created to respond to that intent. Each instance handles a single intent. Similarly, a new instance of a "singleTop" activity may also be created to handle a new intent. However, if the target task already has an existing instance of the activity at the top of its stack, that instance will receive the new intent (in an onNewIntent() call); a new instance is not created. In other circumstances — for example, if an existing instance of the "singleTop" activity is in the target task, but not at the top of the stack, or if it's at the top of a stack, but not in the target task — a new instance would be created and pushed on the stack.

The "singleTask" and "singleInstance" modes also differ from each other in only one respect: A "singleTask" activity allows other activities to be part of its task. It's at the root of the activity stack, but other activities (necessarily "standard" and "singleTop" activities) can be launched into the same task. A "singleInstance" activity, on the other hand, permits no other activities to be part of its task. It's the only activity in the task. If it starts another activity, that activity is assigned to a different task — as if FLAG_ACTIVITY_NEW_TASK was in the intent.

For more information on launch modes and their interaction with Intent flags, see the Activities and Tasks section of the Application Fundamentals document.

android:multiprocess
Whether an instance of the activity can be launched into the process of the component that started it — "true" if it can be, and "false" if not. The default value is "false".

Normally, a new instance of an activity is launched into the process of the application that defined it, so all instances of the activity run in the same process. However, if this flag is set to "true", instances of the activity can run in multiple processes, allowing the system to create instances wherever they are used (provided permissions allow it), something that is almost never necessary or desirable.

android:name
The name of the class that implements the activity, a subclass of Activity. The attribute value should be a fully qualified class name (such as, "com.example.project.ExtracurricularActivity"). However, as a shorthand, if the first character of the name is a period (for example, ".ExtracurricularActivity"), it is appended to the package name specified in the <manifest> element.

There is no default. The name must be specified.

android:noHistory
Whether or not the activity should be removed from the activity stack and finished (its finish() method called) when the user navigates away from it and it's no longer visible on screen — "true" if it should be finished, and "false" if not. The default value is "false".

A value of "true" means that the activity will not leave a historical trace. It will not remain in the activity stack for the task, so the user will not be able to return to it.

This attribute was introduced in API Level 3.

android:permission
The name of a permission that clients must have to launch the activity or otherwise get it to respond to an intent. If a caller of startActivity() or startActivityForResult() has not been granted the specified permission, its intent will not be delivered to the activity.

If this attribute is not set, the permission set by the <application> element's permission attribute applies to the activity. If neither attribute is set, the activity is not protected by a permission.

For more information on permissions, see the Permissions section in the introduction and another document, Security and Permissions.

android:process
The name of the process in which the activity should run. Normally, all components of an application run in the default process created for the application. It has the same name as the application package. The <application> element's process attribute can set a different default for all components. But each component can override the default, allowing you to spread your application across multiple processes.

If the name assigned to this attribute begins with a colon (':'), a new process, private to the application, is created when it's needed and the activity runs in that process. If the process name begins with a lowercase character, the activity will run in a global process of that name, provided that it has permission to do so. This allows components in different applications to share a process, reducing resource usage.

android:screenOrientation
The orientation of the activity's display on the device. The value can be any one of the following strings:
"unspecified" The default value. The system chooses the orientation. The policy it uses, and therefore the choices made in specific contexts, may differ from device to device.
"landscape" Landscape orientation (the display is wider than it is tall).
"portrait" Portrait orientation (the display is taller than it is wide).
"user" The user's current preferred orientation.
"behind" The same orientation as the activity that's immediately beneath it in the activity stack.
"sensor" The orientation determined by a physical orientation sensor. The orientation of the display depends on how the user is holding the device; it changes when the user rotates the device.
"nosensor" An orientation determined without reference to a physical orientation sensor. The sensor is ignored, so the display will not rotate based on how the user moves the device. Except for this distinction, the system chooses the orientation using the same policy as for the "unspecified" setting.
android:stateNotNeeded
Whether or not the activity can be killed and successfully restarted without having saved its state — "true" if it can be restarted without reference to its previous state, and "false" if its previous state is required. The default value is "false".

Normally, before an activity is temporarily shut down to save resources, its onSaveInstanceState() method is called. This method stores the current state of the activity in a Bundle object, which is then passed to onCreate() when the activity is restarted. If this attribute is set to "true", onSaveInstanceState() may not be called and onCreate() will be passed null instead of the Bundle — just as it was when the activity started for the first time.

A "true" setting ensures that the activity can be restarted in the absence of retained state. For example, the activity that displays the home screen uses this setting to make sure that it does not get removed if it crashes for some reason.

android:taskAffinity
The task that the activity has an affinity for. Activities with the same affinity conceptually belong to the same task (to the same "application" from the user's perspective). The affinity of a task is determined by the affinity of its root activity.

The affinity determines two things — the task that the activity is re-parented to (see the allowTaskReparenting attribute) and the task that will house the activity when it is launched with the FLAG_ACTIVITY_NEW_TASK flag.

By default, all activities in an application have the same affinity. You can set this attribute to group them differently, and even place activities defined in different applications within the same task. To specify that the activity does not have an affinity for any task, set it to an empty string.

If this attribute is not set, the activity inherits the affinity set for the application (see the <application> element's taskAffinity attribute). The name of the default affinity for an application is the package name set by the <manifest> element.

android:theme
A reference to a style resource defining an overall theme for the activity. This automatically sets the activity's context to use this theme (see setTheme(), and may also cause "starting" animations prior to the activity being launched (to better match what the activity actually looks like).

If this attribute is not set, the activity inherits the theme set for the application as a whole — see the <application> element's theme attribute. If that attribute is also not set, the default system theme is used.

android:windowSoftInputMode
How the main window of the activity interacts with the window containing the on-screen soft keyboard. The setting for this attribute affects two things:
  • The state of the soft keyboard — whether it is hidden or visible — when the activity becomes the focus of user attention.
  • The adjustment made to the activity's main window — whether it is resized smaller to make room for the soft keyboard or whether its contents pan to make the current focus visible when part of the window is covered by the soft keyboard.

The setting must be one of the values listed in the following table, or a combination of one "state..." value plus one "adjust..." value. Setting multiple values in either group — multiple "state..." values, for example &mdash has undefined results. Individual values are separated by a vertical bar (|). For example:

<activity android:windowSoftInputMode="stateVisible|adjustResize" . . . >

Values set here (other than "stateUnspecified" and "adjustUnspecified") override values set in the theme.

Value Description
"stateUnspecified" The state of the soft keyboard (whether it is hidden or visible) is not specified. The system will choose an appropriate state or rely on the setting in the theme.

This is the default setting for the behavior of the soft keyboard.

"stateUnchanged" The soft keyboard is kept in whatever state it was last in, whether visible or hidden, when the activity comes to the fore.
"stateHidden" The soft keyboard is hidden when the user chooses the activity — that is, when the user affirmatively navigates forward to the activity, rather than backs into it because of leaving another activity.
"stateAlwaysHidden" The soft keyboard is always hidden when the activity's main window has input focus.
"stateVisible" The soft keyboard is visible when that's normally appropriate (when the user is navigating forward to the activity's main window).
"stateAlwaysVisible" The soft keyboard is made visible when the user chooses the activity — that is, when the user affirmatively navigates forward to the activity, rather than backs into it because of leaving another activity.
"adjustUnspecified" It is unspecified whether the activity's main window resizes to make room for the soft keyboard, or whether the contents of the window pan to make the currentfocus visible on-screen. The system will automatically select one of these modes depending on whether the content of the window has any layout views that can scroll their contents. If there is such a view, the window will be resized, on the assumption that scrolling can make all of the window's contents visible within a smaller area.

This is the default setting for the behavior of the main window.

"adjustResize" The activity's main window is always resized to make room for the soft keyboard on screen.
"adjustPan" The activity's main window is not resized to make room for the soft keyboard. Rather, the contents of the window are automatically panned so that the current focus is never obscured by the keyboard and users can always see what they are typing. This is generally less desireable than resizing, because the user may need to close the soft keyboard to get at and interact with obscured parts of the window.

This attribute was introduced in API Level 3.

introduced in:
API Level 1 for all attributes except for noHistory and windowSoftInputMode, which were added in API Level 3.
see also:
<application>
<activity-alias>

'old > App' 카테고리의 다른 글

<action>__AndroidManifest.xml  (0) 2010.02.04
The AndroidManifest.xml File  (0) 2010.02.04
Application Fundamentals  (0) 2010.02.04
Posted by jazzlife
,

<action>

syntax:
<action android:name="string" />
contained in:
<intent-filter>
description:
Adds an action to an intent filter. An <intent-filter> element must contain one or more <action> elements. If it doesn't contain any, no Intent objects will get through the filter. See Intents and Intent Filters for details on intent filters and the role of action specifications within a filter.
attributes:
android:name
The name of the action. Some standard actions are defined in the Intent class as ACTION_string constants. To assign one of these actions to this attribute, prepend "android.intent.action." to the string that follows ACTION_. For example, for ACTION_MAIN, use "android.intent.action.MAIN" and for ACTION_WEB_SEARCH, use "android.intent.action.WEB_SEARCH".

For actions you define, it's best to use the package name as a prefix to ensure uniqueness. For example, a TRANSMOGRIFY action might be specified as follows:

<action android:name="com.example.project.TRANSMOGRIFY" />
introduced in:
API Level 1
see also:
<intent-filter>

'old > App' 카테고리의 다른 글

<activity>__AndroidManifest.xml  (0) 2010.02.04
The AndroidManifest.xml File  (0) 2010.02.04
Application Fundamentals  (0) 2010.02.04
Posted by jazzlife
,

The AndroidManifest.xml File

Every application must have an AndroidManifest.xml file (with precisely that name) in its root directory. The manifest presents essential information about the application to the Android system, information the system must have before it can run any of the application's code. Among other things, the manifest does the following:

  • It names the Java package for the application. The package name serves as a unique identifier for the application.
  • It describes the components of the application — the activities, services, broadcast receivers, and content providers that the application is composed of. It names the classes that implement each of the components and publishes their capabilities (for example, which Intent messages they can handle). These declarations let the Android system know what the components are and under what conditions they can be launched.
  • It determines which processes will host application components.
  • It declares which permissions the application must have in order to access protected parts of the API and interact with other applications.
  • It also declares the permissions that others are required to have in order to interact with the application's components.
  • It lists the Instrumentation classes that provide profiling and other information as the application is running. These declarations are present in the manifest only while the application is being developed and tested; they're removed before the application is published.
  • It declares the minimum level of the Android API that the application requires.
  • It lists the libraries that the application must be linked against.

Structure of the Manifest File

The diagram below shows the general structure of the manifest file and every element that it can contain. Each element, along with all of its attributes, is documented in full in a separate file. To view detailed information about any element, click on the element name in the diagram, in the alphabetical list of elements that follows the diagram, or on any other mention of the element name.

<?xml version="1.0" encoding="utf-8"?> 
 
<manifest> 
 
    <uses-permission /> 
    <permission /> 
    <permission-tree /> 
    <permission-group /> 
    <instrumentation /> 
    <uses-sdk /> 
    <uses-configuration />   
    <uses-feature />   
    <supports-screens />   
 
    <application> 
 
        <activity> 
            <intent-filter> 
                <action /> 
                <category /> 
                <data /> 
            </intent-filter> 
            <meta-data /> 
        </activity> 
 
        <activity-alias> 
            <intent-filter> . . . </intent-filter> 
            <meta-data /> 
        </activity-alias> 
 
        <service> 
            <intent-filter> . . . </intent-filter> 
            <meta-data/> 
        </service> 
 
        <receiver> 
            <intent-filter> . . . </intent-filter> 
            <meta-data /> 
        </receiver> 
 
        <provider> 
            <grant-uri-permission /> 
            <path-permission /> 
            <meta-data /> 
        </provider> 
 
        <uses-library /> 
 
    </application> 
 
</manifest>

All the elements that can appear in the manifest file are listed below in alphabetical order. These are the only legal elements; you cannot add your own elements or attributes.

<action>
<activity>
<activity-alias>
<application>
<category>
<data>
<grant-uri-permission>
<instrumentation>
<intent-filter>
<manifest>
<meta-data>
<path-permission />
<permission>
<permission-group>
<permission-tree>
<provider>
<receiver>
<service>
<supports-screens>
<uses-configuration>
<uses-feature>
<uses-library>
<uses-permission>
<uses-sdk>

File Conventions

Some conventions and rules apply generally to all elements and attributes in the manifest:

Elements
Only the <manifest> and <application> elements are required, they each must be present and can occur only once. Most of the others can occur many times or not at all — although at least some of them must be present for the manifest to accomplish anything meaningful.

If an element contains anything at all, it contains other elements. All values are set through attributes, not as character data within an element.

Elements at the same level are generally not ordered. For example, <activity>, <provider>, and <service> elements can be intermixed in any sequence. (An <activity-alias> element is the exception to this rule: It must follow the <activity> it is an alias for.)

Attributes
In a formal sense, all attributes are optional. However, there are some that must be specified for an element to accomplish its purpose. Use the documentation as a guide. For truly optional attributes, it mentions a default value or states what happens in the absence of a specification.

Except for some attributes of the root <manifest> element, all attribute names begin with an android: prefix — for example, android:alwaysRetainTaskState. Because the prefix is universal, the documentation generally omits it when referring to attributes by name.

Declaring class names
Many elements correspond to Java objects, including elements for the application itself (the <application> element) and its principal components — activities (<activity>), services (<service>), broadcast receivers (<receiver>), and content providers (<provider>).

If you define a subclass, as you almost always would for the component classes (Activity, Service, BroadcastReceiver, and ContentProvider), the subclass is declared through a name attribute. The name must include the full package designation. For example, an Service subclass might be declared as follows:

<manifest . . . > 
    <application . . . > 
        <service android:name="com.example.project.SecretService" . . . > 
            . . . 
        </service> 
        . . . 
    </application> 
</manifest>

However, as a shorthand, if the first character of the string is a period, the string is appended to the application's package name (as specified by the <manifest> element's package attribute). The following assignment is the same as the one above:

<manifest package="com.example.project" . . . > 
    <application . . . > 
        <service android:name=".SecretService" . . . > 
            . . . 
        </service> 
        . . . 
    </application> 
</manifest>

When starting a component, Android creates an instance of the named subclass. If a subclass isn't specified, it creates an instance of the base class.

Multiple values
If more than one value can be specified, the element is almost always repeated, rather than listing multiple values within a single element. For example, an intent filter can list several actions:
<intent-filter . . . > 
    <action android:name="android.intent.action.EDIT" /> 
    <action android:name="android.intent.action.INSERT" /> 
    <action android:name="android.intent.action.DELETE" /> 
    . . . 
</intent-filter>
Resource values
Some attributes have values that can be displayed to users — for example, a label and an icon for an activity. The values of these attributes should be localized and therefore set from a resource or theme. Resource values are expressed in the following format,

@[package:]type:name

where the package name can be omitted if the resource is in the same package as the application, type is a type of resource — such as "string" or "drawable" — and name is the name that identifies the specific resource. For example:

<activity android:icon="@drawable/smallPic" . . . >

Values from a theme are expressed in a similar manner, but with an initial '?' rather than '@':

?[package:]type:name

String values
Where an attribute value is a string, double backslashes ('\\') must be used to escape characters — for example, '\\n' for a newline or '\\uxxxx' for a Unicode character.

File Features

The following sections describe how some Android features are reflected in the manifest file.

Intent Filters

The core components of an application (its activities, services, and broadcast receivers) are activated by intents. An intent is a bundle of information (an Intent object) describing a desired action — including the data to be acted upon, the category of component that should perform the action, and other pertinent instructions. Android locates an appropriate component to respond to the intent, launches a new instance of the component if one is needed, and passes it the Intent object.

Components advertise their capabilities — the kinds of intents they can respond to — through intent filters. Since the Android system must learn which intents a component can handle before it launches the component, intent filters are specified in the manifest as <intent-filter> elements. A component may have any number of filters, each one describing a different capability.

An intent that explicitly names a target component will activate that component; the filter doesn't play a role. But an intent that doesn't specify a target by name can activate a component only if it can pass through one of the component's filters.

For information on how Intent objects are tested against intent filters, see a separate document, Intents and Intent Filters.

Icons and Labels

A number of elements have icon and label attributes for a small icon and a text label that can be displayed to users. Some also have a description attribute for longer explanatory text that can also be shown on-screen. For example, the <permission> element has all three of these attributes, so that when the user is asked whether to grant the permission to an application that has requested it, an icon representing the permission, the name of the permission, and a description of what it entails can all be presented to the user.

In every case, the icon and label set in a containing element become the default icon and label settings for all of the container's subelements. Thus, the icon and label set in the <application> element are the default icon and label for each of the application's components. Similarly, the icon and label set for a component — for example, an <activity> element — are the default settings for each of the component's <intent-filter> elements. If an <application> element sets a label, but an activity and its intent filter do not, the application label is treated as the label for both the activity and the intent filter.

The icon and label set for an intent filter are used to represent a component whenever the component is presented to the user as fulfilling the function advertised by the filter. For example, a filter with "android.intent.action.MAIN" and "android.intent.category.LAUNCHER" settings advertises an activity as one that initiates an application — that is, as one that should be displayed in the application launcher. The icon and label set in the filter are therefore the ones displayed in the launcher.

Permissions

A permission is a restriction limiting access to a part of the code or to data on the device. The limitation is imposed to protect critical data and code that could be misused to distort or damage the user experience.

Each permission is identified by a unique label. Often the label indicates the action that's restricted. For example, here are some permissions defined by Android:

android.permission.CALL_EMERGENCY_NUMBERS
android.permission.READ_OWNER_DATA
android.permission.SET_WALLPAPER
android.permission.DEVICE_POWER

A feature can be protected by at most one permission.

If an application needs access to a feature protected by a permission, it must declare that it requires that permission with a <uses-permission> element in the manifest. Then, when the application is installed on the device, the installer determines whether or not to grant the requested permission by checking the authorities that signed the application's certificates and, in some cases, asking the user. If the permission is granted, the application is able to use the protected features. If not, its attempts to access those features will simply fail without any notification to the user.

An application can also protect its own components (activities, services, broadcast receivers, and content providers) with permissions. It can employ any of the permissions defined by Android (listed in android.Manifest.permission) or declared by other applications. Or it can define its own. A new permission is declared with the <permission> element. For example, an activity could be protected as follows:

<manifest . . . > 
    <permission android:name="com.example.project.DEBIT_ACCT" . . . /> 
    . . . 
    <application . . .> 
        <activity android:name="com.example.project.FreneticActivity" 
                  android:permission="com.example.project.DEBIT_ACCT" 
                  . . . > 
            . . . 
        </activity> 
    </application> 
    . . . 
    <uses-permission android:name="com.example.project.DEBIT_ACCT" /> 
    . . . 
</manifest>

Note that, in this example, the DEBIT_ACCT permission is not only declared with the <permission> element, its use is also requested with the <uses-permission> element. Its use must be requested in order for other components of the application to launch the protected activity, even though the protection is imposed by the application itself.

If, in the same example, the permission attribute was set to a permission declared elsewhere (such as android.permission.CALL_EMERGENCY_NUMBERS, it would not have been necessary to declare it again with a <permission> element. However, it would still have been necessary to request its use with <uses-permission>.

The <permission-tree> element declares a namespace for a group of permissions that will be defined in code. And <permission-group> defines a label for a set of permissions (both those declared in the manifest with <permission> elements and those declared elsewhere). It affects only how the permissions are grouped when presented to the user. The <permission-group> element does not specify which permissions belong to the group; it just gives the group a name. A permission is placed in the group by assigning the group name to the <permission> element's permissionGroup attribute.

Libraries

Every application is linked against the default Android library, which includes the basic packages for building applications (with common classes such as Activity, Service, Intent, View, Button, Application, ContentProvider, and so on).

However, some packages reside in their own libraries. If your application uses code from any of these packages, it must explicitly asked to be linked against them. The manifest must contain a separate <uses-library> element to name each of the libraries. (The library name can be found in the documentation for the package.)

'old > App' 카테고리의 다른 글

<activity>__AndroidManifest.xml  (0) 2010.02.04
<action>__AndroidManifest.xml  (0) 2010.02.04
Application Fundamentals  (0) 2010.02.04
Posted by jazzlife
,

Application Fundamentals

old/App 2010. 2. 4. 20:24

Application Fundamentals

Android applications are written in the Java programming language. The compiled Java code — along with any data and resource files required by the application — is bundled by the aapt tool into an Android package, an archive file marked by an .apk suffix. This file is the vehicle for distributing the application and installing it on mobile devices; it's the file users download to their devices. All the code in a single .apk file is considered to be one application.

In many ways, each Android application lives in its own world:

  • By default, every application runs in its own Linux process. Android starts the process when any of the application's code needs to be executed, and shuts down the process when it's no longer needed and system resources are required by other applications.
  • Each process has its own Java virtual machine (VM), so application code runs in isolation from the code of all other applications.
  • By default, each application is assigned a unique Linux user ID. Permissions are set so that the application's files are visible only that user, only to the application itself — although there are ways to export them to other applications as well.

It's possible to arrange for two applications to share the same user ID, in which case they will be able to see each other's files. To conserve system resources, applications with the same ID can also arrange to run in the same Linux process, sharing the same VM.

Application Components

A central feature of Android is that one application can make use of elements of other applications (provided those applications permit it). For example, if your application needs to display a scrolling list of images and another application has developed a suitable scroller and made it available to others, you can call upon that scroller to do the work, rather than develop your own. Your application doesn't incorporate the code of the other application or link to it. Rather, it simply starts up that piece of the other application when the need arises.

For this to work, the system must be able to start an application process when any part of it is needed, and instantiate the Java objects for that part. Therefore, unlike applications on most other systems, Android applications don't have a single entry point for everything in the application (no main() function, for example). Rather, they have essential components that the system can instantiate and run as needed. There are four types of components:

Activities
An activity presents a visual user interface for one focused endeavor the user can undertake. For example, an activity might present a list of menu items users can choose from or it might display photographs along with their captions. A text messaging application might have one activity that shows a list of contacts to send messages to, a second activity to write the message to the chosen contact, and other activities to review old messages or change settings. Though they work together to form a cohesive user interface, each activity is independent of the others. Each one is implemented as a subclass of the Activity base class.

An application might consist of just one activity or, like the text messaging application just mentioned, it may contain several. What the activities are, and how many there are depends, of course, on the application and its design. Typically, one of the activities is marked as the first one that should be presented to the user when the application is launched. Moving from one activity to another is accomplished by having the current activity start the next one.

Each activity is given a default window to draw in. Typically, the window fills the screen, but it might be smaller than the screen and float on top of other windows. An activity can also make use of additional windows — for example, a pop-up dialog that calls for a user response in the midst of the activity, or a window that presents users with vital information when they select a particular item on-screen.

The visual content of the window is provided by a hierarchy of views — objects derived from the base View class. Each view controls a particular rectangular space within the window. Parent views contain and organize the layout of their children. Leaf views (those at the bottom of the hierarchy) draw in the rectangles they control and respond to user actions directed at that space. Thus, views are where the activity's interaction with the user takes place. For example, a view might display a small image and initiate an action when the user taps that image. Android has a number of ready-made views that you can use — including buttons, text fields, scroll bars, menu items, check boxes, and more.

A view hierarchy is placed within an activity's window by the Activity.setContentView() method. The content view is the View object at the root of the hierarchy. (See the separate User Interface document for more information on views and the hierarchy.)

Services
A service doesn't have a visual user interface, but rather runs in the background for an indefinite period of time. For example, a service might play background music as the user attends to other matters, or it might fetch data over the network or calculate something and provide the result to activities that need it. Each service extends the Service base class.

A prime example is a media player playing songs from a play list. The player application would probably have one or more activities that allow the user to choose songs and start playing them. However, the music playback itself would not be handled by an activity because users will expect the music to keep playing even after they leave the player and begin something different. To keep the music going, the media player activity could start a service to run in the background. The system would then keep the music playback service running even after the activity that started it leaves the screen.

It's possible to connect to (bind to) an ongoing service (and start the service if it's not already running). While connected, you can communicate with the service through an interface that the service exposes. For the music service, this interface might allow users to pause, rewind, stop, and restart the playback.

Like activities and the other components, services run in the main thread of the application process. So that they won't block other components or the user interface, they often spawn another thread for time-consuming tasks (like music playback). See Processes and Threads, later.

Broadcast receivers
A broadcast receiver is a component that does nothing but receive and react to broadcast announcements. Many broadcasts originate in system code — for example, announcements that the timezone has changed, that the battery is low, that a picture has been taken, or that the user changed a language preference. Applications can also initiate broadcasts — for example, to let other applications know that some data has been downloaded to the device and is available for them to use.

An application can have any number of broadcast receivers to respond to any announcements it considers important. All receivers extend the BroadcastReceiver base class.

Broadcast receivers do not display a user interface. However, they may start an activity in response to the information they receive, or they may use the NotificationManager to alert the user. Notifications can get the user's attention in various ways — flashing the backlight, vibrating the device, playing a sound, and so on. They typically place a persistent icon in the status bar, which users can open to get the message.

Content providers
A content provider makes a specific set of the application's data available to other applications. The data can be stored in the file system, in an SQLite database, or in any other manner that makes sense. The content provider extends the ContentProvider base class to implement a standard set of methods that enable other applications to retrieve and store data of the type it controls. However, applications do not call these methods directly. Rather they use a ContentResolver object and call its methods instead. A ContentResolver can talk to any content provider; it cooperates with the provider to manage any interprocess communication that's involved.

See the separate Content Providers document for more information on using content providers.

Whenever there's a request that should be handled by a particular component, Android makes sure that the application process of the component is running, starting it if necessary, and that an appropriate instance of the component is available, creating the instance if necessary.

Activating components: intents

Content providers are activated when they're targeted by a request from a ContentResolver. The other three components — activities, services, and broadcast receivers — are activated by asynchronous messages called intents. An intent is an Intent object that holds the content of the message. For activities and services, it names the action being requested and specifies the URI of the data to act on, among other things. For example, it might convey a request for an activity to present an image to the user or let the user edit some text. For broadcast receivers, the Intent object names the action being announced. For example, it might announce to interested parties that the camera button has been pressed.

There are separate methods for activiating each type of component:

  • An activity is launched (or given something new to do) by passing an Intent object to Context.startActivity() or Activity.startActivityForResult(). The responding activity can look at the initial intent that caused it to be launched by calling its getIntent() method. Android calls the activity's onNewIntent() method to pass it any subsequent intents.

    One activity often starts the next one. If it expects a result back from the activity it's starting, it calls startActivityForResult() instead of startActivity(). For example, if it starts an activity that lets the user pick a photo, it might expect to be returned the chosen photo. The result is returned in an Intent object that's passed to the calling activity's onActivityResult() method.

  • A service is started (or new instructions are given to an ongoing service) by passing an Intent object to Context.startService(). Android calls the service's onStart() method and passes it the Intent object.

    Similarly, an intent can be passed to Context.bindService() to establish an ongoing connection between the calling component and a target service. The service receives the Intent object in an onBind() call. (If the service is not already running, bindService() can optionally start it.) For example, an activity might establish a connection with the music playback service mentioned earlier so that it can provide the user with the means (a user interface) for controlling the playback. The activity would call bindService() to set up that connection, and then call methods defined by the service to affect the playback.

    A later section, Remote procedure calls, has more details about binding to a service.

  • An application can initiate a broadcast by passing an Intent object to methods like Context.sendBroadcast(), Context.sendOrderedBroadcast(), and Context.sendStickyBroadcast() in any of their variations. Android delivers the intent to all interested broadcast receivers by calling their onReceive() methods.

For more on intent messages, see the separate article, Intents and Intent Filters.

Shutting down components

A content provider is active only while it's responding to a request from a ContentResolver. And a broadcast receiver is active only while it's responding to a broadcast message. So there's no need to explicitly shut down these components.

Activities, on the other hand, provide the user interface. They're in a long-running conversation with the user and may remain active, even when idle, as long as the conversation continues. Similarly, services may also remain running for a long time. So Android has methods to shut down activities and services in an orderly way:

  • An activity can be shut down by calling its finish() method. One activity can shut down another activity (one it started with startActivityForResult()) by calling finishActivity().
  • A service can be stopped by calling its stopSelf() method, or by calling Context.stopService().

Components might also be shut down by the system when they are no longer being used or when Android must reclaim memory for more active components. A later section, Component Lifecycles, discusses this possibility and its ramifications in more detail.

The manifest file

Before Android can start an application component, it must learn that the component exists. Therefore, applications declare their components in a manifest file that's bundled into the Android package, the .apk file that also holds the application's code, files, and resources.

The manifest is a structured XML file and is always named AndroidManifest.xml for all applications. It does a number of things in addition to declaring the application's components, such as naming any libraries the application needs to be linked against (besides the default Android library) and identifying any permissions the application expects to be granted.

But the principal task of the manifest is to inform Android about the application's components. For example, an activity might be declared as follows:

<?xml version="1.0" encoding="utf-8"?> 
<manifest . . . > 
    <application . . . > 
        <activity android:name="com.example.project.FreneticActivity" 
                  android:icon="@drawable/small_pic.png" 
                  android:label="@string/freneticLabel"  
                  . . .  > 
        </activity> 
        . . . 
    </application> 
</manifest>

The name attribute of the <activity> element names the Activity subclass that implements the activity. The icon and label attributes point to resource files containing an icon and label that can be displayed to users to represent the activity.

The other components are declared in a similar way — <service> elements for services, <receiver> elements for broadcast receivers, and <provider> elements for content providers. Activities, services, and content providers that are not declared in the manifest are not visible to the system and are consequently never run. However, broadcast receivers can either be declared in the manifest, or they can be created dynamically in code (as BroadcastReceiver objects) and registered with the system by calling Context.registerReceiver().

For more on how to structure a manifest file for your application, see The AndroidManifest.xml File.

Intent filters

An Intent object can explicitly name a target component. If it does, Android finds that component (based on the declarations in the manifest file) and activates it. But if a target is not explicitly named, Android must locate the best component to respond to the intent. It does so by comparing the Intent object to the intent filters of potential targets. A component's intent filters inform Android of the kinds of intents the component is able to handle. Like other essential information about the component, they're declared in the manifest file. Here's an extension of the previous example that adds two intent filters to the activity:

<?xml version="1.0" encoding="utf-8"?> 
<manifest . . . > 
    <application . . . > 
        <activity android:name="com.example.project.FreneticActivity" 
                  android:icon="@drawable/small_pic.png" 
                  android:label="@string/freneticLabel"  
                  . . .  > 
            <intent-filter . . . > 
                <action android:name="android.intent.action.MAIN" /> 
                <category android:name="android.intent.category.LAUNCHER" /> 
            </intent-filter> 
            <intent-filter . . . > 
                <action android:name="com.example.project.BOUNCE" /> 
                <data android:mimeType="image/jpeg" /> 
                <category android:name="android.intent.category.DEFAULT" /> 
            </intent-filter> 
        </activity> 
        . . . 
    </application> 
</manifest>

The first filter in the example — the combination of the action "android.intent.action.MAIN" and the category "android.intent.category.LAUNCHER" — is a common one. It marks the activity as one that should be represented in the application launcher, the screen listing applications users can launch on the device. In other words, the activity is the entry point for the application, the initial one users would see when they choose the application in the launcher.

The second filter declares an action that the activity can perform on a particular type of data.

A component can have any number of intent filters, each one declaring a different set of capabilities. If it doesn't have any filters, it can be activated only by intents that explicitly name the component as the target.

For a broadcast receiver that's created and registered in code, the intent filter is instantiated directly as an IntentFilter object. All other filters are set up in the manifest.

For more on intent filters, see a separate document, Intents and Intent Filters.

Activities and Tasks

As noted earlier, one activity can start another, including one defined in a different application. Suppose, for example, that you'd like to let users display a street map of some location. There's already an activity that can do that, so all your activity needs to do is put together an Intent object with the required information and pass it to startActivity(). The map viewer will display the map. When the user hits the BACK key, your activity will reappear on screen.

To the user, it will seem as if the map viewer is part of the same application as your activity, even though it's defined in another application and runs in that application's process. Android maintains this user experience by keeping both activities in the same task. Simply put, a task is what the user experiences as an "application." It's a group of related activities, arranged in a stack. The root activity in the stack is the one that began the task — typically, it's an activity the user selected in the application launcher. The activity at the top of the stack is one that's currently running — the one that is the focus for user actions. When one activity starts another, the new activity is pushed on the stack; it becomes the running activity. The previous activity remains in the stack. When the user presses the BACK key, the current activity is popped from the stack, and the previous one resumes as the running activity.

The stack contains objects, so if a task has more than one instance of the same Activity subclass open — multiple map viewers, for example — the stack has a separate entry for each instance. Activities in the stack are never rearranged, only pushed and popped.

A task is a stack of activities, not a class or an element in the manifest file. So there's no way to set values for a task independently of its activities. Values for the task as a whole are set in the root activity. For example, the next section will talk about the "affinity of a task"; that value is read from the affinity set for the task's root activity.

All the activities in a task move together as a unit. The entire task (the entire activity stack) can be brought to the foreground or sent to the background. Suppose, for instance, that the current task has four activities in its stack — three under the current activity. The user presses the HOME key, goes to the application launcher, and selects a new application (actually, a new task). The current task goes into the background and the root activity for the new task is displayed. Then, after a short period, the user goes back to the home screen and again selects the previous application (the previous task). That task, with all four activities in the stack, comes forward. When the user presses the BACK key, the screen does not display the activity the user just left (the root activity of the previous task). Rather, the activity on the top of the stack is removed and the previous activity in the same task is displayed.

The behavior just described is the default behavior for activities and tasks. But there are ways to modify almost all aspects of it. The association of activities with tasks, and the behavior of an activity within a task, is controlled by the interaction between flags set in the Intent object that started the activity and attributes set in the activity's <activity> element in the manifest. Both requester and respondent have a say in what happens.

In this regard, the principal Intent flags are:

FLAG_ACTIVITY_NEW_TASK
FLAG_ACTIVITY_CLEAR_TOP
FLAG_ACTIVITY_RESET_TASK_IF_NEEDED
FLAG_ACTIVITY_SINGLE_TOP

The principal <activity> attributes are:

taskAffinity
launchMode
allowTaskReparenting
clearTaskOnLaunch
alwaysRetainTaskState
finishOnTaskLaunch

The following sections describe what some of these flags and attributes do, how they interact, and what considerations should govern their use.

Affinities and new tasks

By default, all the activities in an application have an affinity for each other — that is, there's a preference for them all to belong to the same task. However, an individual affinity can be set for each activity with the taskAffinity attribute of the <activity> element. Activities defined in different applications can share an affinity, or activities defined in the same application can be assigned different affinities. The affinity comes into play in two circumstances: When the Intent object that launches an activity contains the FLAG_ACTIVITY_NEW_TASK flag, and when an activity has its allowTaskReparenting attribute set to "true".

The FLAG_ACTIVITY_NEW_TASK flag
As described earlier, a new activity is, by default, launched into the task of the activity that called startActivity(). It's pushed onto the same stack as the caller. However, if the Intent object passed to startActivity() contains the FLAG_ACTIVITY_NEW_TASK flag, the system looks for a different task to house the new activity. Often, as the name of the flag implies, it's a new task. However, it doesn't have to be. If there's already an existing task with the same affinity as the new activity, the activity is launched into that task. If not, it begins a new task.
The allowTaskReparenting attribute
If an activity has its allowTaskReparenting attribute set to "true", it can move from the task it starts in to the task it has an affinity for when that task comes to the fore. For example, suppose that an activity that reports weather conditions in selected cities is defined as part of a travel application. It has the same affinity as other activities in the same application (the default affinity) and it allows reparenting. One of your activities starts the weather reporter, so it initially belongs to the same task as your activity. However, when the travel application next comes forward, the weather reporter will be reassigned to and displayed with that task.

If an .apk file contains more than one "application" from the user's point of view, you will probably want to assign different affinities to the activities associated with each of them.

Launch modes

There are four different launch modes that can be assigned to an <activity> element's launchMode attribute:

"standard" (the default mode)
"singleTop"
"singleTask"
"singleInstance"

The modes differ from each other on these four points:

  • Which task will hold the activity that responds to the intent. For the "standard" and "singleTop" modes, it's the task that originated the intent (and called startActivity()) — unless the Intent object contains the FLAG_ACTIVITY_NEW_TASK flag. In that case, a different task is chosen as described in the previous section, Affinities and new tasks.

    In contrast, the "singleTask" and "singleInstance" modes mark activities that are always at the root of a task. They define a task; they're never launched into another task.

  • Whether there can be multiple instances of the activity. A "standard" or "singleTop" activity can be instantiated many times. They can belong to multiple tasks, and a given task can have multiple instances of the same activity.

    In contrast, "singleTask" and "singleInstance" activities are limited to just one instance. Since these activities are at the root of a task, this limitation means that there is never more than a single instance of the task on the device at one time.

  • Whether the instance can have other activities in its task. A "singleInstance" activity stands alone as the only activity in its task. If it starts another activity, that activity will be launched into a different task regardless of its launch mode — as if FLAG_ACTIVITY_NEW_TASK was in the intent. In all other respects, the "singleInstance" mode is identical to "singleTask".

    The other three modes permit multiple activities to belong to the task. A "singleTask" activity will always be the root activity of the task, but it can start other activities that will be assigned to its task. Instances of "standard" and "singleTop" activities can appear anywhere in a stack.

  • Whether a new instance of the class will be launched to handle a new intent. For the default "standard" mode, a new instance is created to respond to every new intent. Each instance handles just one intent. For the "singleTop" mode, an existing instance of the class is re-used to handle a new intent if it resides at the top of the activity stack of the target task. If it does not reside at the top, it is not re-used. Instead, a new instance is created for the new intent and pushed on the stack.

    For example, suppose a task's activity stack consists of root activity A with activities B, C, and D on top in that order, so the stack is A-B-C-D. An intent arrives for an activity of type D. If D has the default "standard" launch mode, a new instance of the class is launched and the stack becomes A-B-C-D-D. However, if D's launch mode is "singleTop", the existing instance is expected to handle the new intent (since it's at the top of the stack) and the stack remains A-B-C-D.

    If, on the other hand, the arriving intent is for an activity of type B, a new instance of B would be launched no matter whether B's mode is "standard" or "singleTop" (since B is not at the top of the stack), so the resulting stack would be A-B-C-D-B.

    As noted above, there's never more than one instance of a "singleTask" or "singleInstance" activity, so that instance is expected to handle all new intents. A "singleInstance" activity is always at the top of the stack (since it is the only activity in the task), so it is always in position to handle the intent. However, a "singleTask" activity may or may not have other activities above it in the stack. If it does, it is not in position to handle the intent, and the intent is dropped. (Even though the intent is dropped, its arrival would have caused the task to come to the foreground, where it would remain.)

When an existing activity is asked to handle a new intent, the Intent object is passed to the activity in an onNewIntent() call. (The intent object that originally started the activity can be retrieved by calling getIntent().)

Note that when a new instance of an Activity is created to handle a new intent, the user can always press the BACK key to return to the previous state (to the previous activity). But when an existing instance of an Activity handles a new intent, the user cannot press the BACK key to return to what that instance was doing before the new intent arrived.

For more on launch modes, see the description of the <activity> element.

Clearing the stack

If the user leaves a task for a long time, the system clears the task of all activities except the root activity. When the user returns to the task again, it's as the user left it, except that only the initial activity is present. The idea is that, after a time, users will likely have abandoned what they were doing before and are returning to the task to begin something new.

That's the default. There are some activity attributes that can be used to control this behavior and modify it:

The alwaysRetainTaskState attribute
If this attribute is set to "true" in the root activity of a task, the default behavior just described does not happen. The task retains all activities in its stack even after a long period.
The clearTaskOnLaunch attribute
If this attribute is set to "true" in the root activity of a task, the stack is cleared down to the root activity whenever the user leaves the task and returns to it. In other words, it's the polar opposite of alwaysRetainTaskState. The user always returns to the task in its initial state, even after a momentary absence.
The finishOnTaskLaunch attribute
This attribute is like clearTaskOnLaunch, but it operates on a single activity, not an entire task. And it can cause any activity to go away, including the root activity. When it's set to "true", the activity remains part of the task only for the current session. If the user leaves and then returns to the task, it no longer is present.

There's another way to force activities to be removed from the stack. If an Intent object includes the FLAG_ACTIVITY_CLEAR_TOP flag, and the target task already has an instance of the type of activity that should handle the intent in its stack, all activities above that instance are cleared away so that it stands at the top of the stack and can respond to the intent. If the launch mode of the designated activity is "standard", it too will be removed from the stack, and a new instance will be launched to handle the incoming intent. That's because a new instance is always created for a new intent when the launch mode is "standard".

FLAG_ACTIVITY_CLEAR_TOP is most often used in conjunction with FLAG_ACTIVITY_NEW_TASK. When used together, these flags are a way of locating an existing activity in another task and putting it in a position where it can respond to the intent.

Starting tasks

An activity is set up as the entry point for a task by giving it an intent filter with "android.intent.action.MAIN" as the specified action and "android.intent.category.LAUNCHER" as the specified category. (There's an example of this type of filter in the earlier Intent Filters section.) A filter of this kind causes an icon and label for the activity to be displayed in the application launcher, giving users a way both to launch the task and to return to it at any time after it has been launched.

This second ability is important: Users must be able to leave a task and then come back to it later. For this reason, the two launch modes that mark activities as always initiating a task, "singleTask" and "singleInstance", should be used only when the activity has a MAIN and LAUNCHER filter. Imagine, for example, what could happen if the filter is missing: An intent launches a "singleTask" activity, initiating a new task, and the user spends some time working in that task. The user then presses the HOME key. The task is now ordered behind and obscured by the home screen. And, because it is not represented in the application launcher, the user has no way to return to it.

A similar difficulty attends the FLAG_ACTIVITY_NEW_TASK flag. If this flag causes an activity to begin a new task and the user presses the HOME key to leave it, there must be some way for the user to navigate back to it again. Some entities (such as the notification manager) always start activities in an external task, never as part of their own, so they always put FLAG_ACTIVITY_NEW_TASK in the intents they pass to startActivity(). If you have an activity that can be invoked by an external entity that might use this flag, take care that the user has a independent way to get back to the task that's started.

For those cases where you don't want the user to be able to return to an activity, set the <activity> element's finishOnTaskLaunch to "true". See Clearing the stack, earlier.

Processes and Threads

When the first of an application's components needs to be run, Android starts a Linux process for it with a single thread of execution. By default, all components of the application run in that process and thread.

However, you can arrange for components to run in other processes, and you can spawn additional threads for any process.

Processes

The process where a component runs is controlled by the manifest file. The component elements — <activity>, <service>, <receiver>, and <provider> — each have a process attribute that can specify a process where that component should run. These attributes can be set so that each component runs in its own process, or so that some components share a process while others do not. They can also be set so that components of different applications run in the same process — provided that the applications share the same Linux user ID and are signed by the same authorities. The <application> element also has a process attribute, for setting a default value that applies to all components.

All components are instantiated in the main thread of the specified process, and system calls to the component are dispatched from that thread. Separate threads are not created for each instance. Consequently, methods that respond to those calls — methods like View.onKeyDown() that report user actions and the lifecycle notifications discussed later in the Component Lifecycles section — always run in the main thread of the process. This means that no component should perform long or blocking operations (such as networking operations or computation loops) when called by the system, since this will block any other components also in the process. You can spawn separate threads for long operations, as discussed under Threads, next.

Android may decide to shut down a process at some point, when memory is low and required by other processes that are more immediately serving the user. Application components running in the process are consequently destroyed. A process is restarted for those components when there's again work for them to do.

When deciding which processes to terminate, Android weighs their relative importance to the user. For example, it more readily shuts down a process with activities that are no longer visible on screen than a process with visible activities. The decision whether to terminate a process, therefore, depends on the state of the components running in that process. Those states are the subject of a later section, Component Lifecycles.

Threads

Even though you may confine your application to a single process, there will likely be times when you will need to spawn a thread to do some background work. Since the user interface must always be quick to respond to user actions, the thread that hosts an activity should not also host time-consuming operations like network downloads. Anything that may not be completed quickly should be assigned to a different thread.

Threads are created in code using standard Java Thread objects. Android provides a number of convenience classes for managing threads — Looper for running a message loop within a thread, Handler for processing messages, and HandlerThread for setting up a thread with a message loop.

Remote procedure calls

Android has a lightweight mechanism for remote procedure calls (RPCs) — where a method is called locally, but executed remotely (in another process), with any result returned back to the caller. This entails decomposing the method call and all its attendant data to a level the operating system can understand, transmitting it from the local process and address space to the remote process and address space, and reassembling and reenacting the call there. Return values have to be transmitted in the opposite direction. Android provides all the code to do that work, so that you can concentrate on defining and implementing the RPC interface itself.

An RPC interface can include only methods. All methods are executed synchronously (the local method blocks until the remote method finishes), even if there is no return value.

In brief, the mechanism works as follows: You'd begin by declaring the RPC interface you want to implement using a simple IDL (interface definition language). From that declaration, the aidl tool generates a Java interface definition that must be made available to both the local and the remote process. It contains two inner class, as shown in the following diagram:

RPC mechanism.

The inner classes have all the code needed to administer remote procedure calls for the interface you declared with the IDL. Both inner classes implement the IBinder interface. One of them is used locally and internally by the system; the code you write can ignore it. The other, called Stub, extends the Binder class. In addition to internal code for effectuating the IPC calls, it contains declarations for the methods in the RPC interface you declared. You would subclass Stub to implement those methods, as indicated in the diagram.

Typically, the remote process would be managed by a service (because a service can inform the system about the process and its connections to other processes). It would have both the interface file generated by the aidl tool and the Stub subclass implementing the RPC methods. Clients of the service would have only the interface file generated by the aidl tool.

Here's how a connection between a service and its clients is set up:

  • Clients of the service (on the local side) would implement onServiceConnected() and onServiceDisconnected() methods so they can be notified when a successful connection to the remote service is established, and when it goes away. They would then call bindService() to set up the connection.
  • The service's onBind() method would be implemented to either accept or reject the connection, depending on the intent it receives (the intent passed to bindService()). If the connection is accepted, it returns an instance of the Stub subclass.
  • If the service accepts the connection, Android calls the client's onServiceConnected() method and passes it an IBinder object, a proxy for the Stub subclass managed by the service. Through the proxy, the client can make calls on the remote service.

This brief description omits some details of the RPC mechanism. For more information, see Designing a Remote Interface Using AIDL and the IBinder class description.

Thread-safe methods

In a few contexts, the methods you implement may be called from more than one thread, and therefore must be written to be thread-safe.

This is primarily true for methods that can be called remotely — as in the RPC mechanism discussed in the previous section. When a call on a method implemented in an IBinder object originates in the same process as the IBinder, the method is executed in the caller's thread. However, when the call originates in another process, the method is executed in a thread chosen from a pool of threads that Android maintains in the same process as the IBinder; it's not executed in the main thread of the process. For example, whereas a service's onBind() method would be called from the main thread of the service's process, methods implemented in the object that onBind() returns (for example, a Stub subclass that implements RPC methods) would be called from threads in the pool. Since services can have more than one client, more than one pool thread can engage the same IBinder method at the same time. IBinder methods must, therefore, be implemented to be thread-safe.

Similarly, a content provider can receive data requests that originate in other processes. Although the ContentResolver and ContentProvider classes hide the details of how the interprocess communication is managed, ContentProvider methods that respond to those requests — the methods query(), insert(), delete(), update(), and getType() — are called from a pool of threads in the content provider's process, not the main thread of the process. Since these methods may be called from any number of threads at the same time, they too must be implemented to be thread-safe.

Component Lifecycles

Application components have a lifecycle — a beginning when Android instantiates them to respond to intents through to an end when the instances are destroyed. In between, they may sometimes be active or inactive,or, in the case of activities, visible to the user or invisible. This section discusses the lifecycles of activities, services, and broadcast receivers — including the states that they can be in during their lifetimes, the methods that notify you of transitions between states, and the effect of those states on the possibility that the process hosting them might be terminated and the instances destroyed.

Activity lifecycle

An activity has essentially three states:

  • It is active or running when it is in the foreground of the screen (at the top of the activity stack for the current task). This is the activity that is the focus for the user's actions.
  • It is paused if it has lost focus but is still visible to the user. That is, another activity lies on top of it and that activity either is transparent or doesn't cover the full screen, so some of the paused activity can show through. A paused activity is completely alive (it maintains all state and member information and remains attached to the window manager), but can be killed by the system in extreme low memory situations.

  • It is stopped if it is completely obscured by another activity. It still retains all state and member information. However, it is no longer visible to the user so its window is hidden and it will often be killed by the system when memory is needed elsewhere.

If an activity is paused or stopped, the system can drop it from memory either by asking it to finish (calling its finish() method), or simply killing its process. When it is displayed again to the user, it must be completely restarted and restored to its previous state.

As an activity transitions from state to state, it is notified of the change by calls to the following protected methods:

void onCreate(Bundle savedInstanceState)
void onStart()
void onRestart()
void onResume()
void onPause()
void onStop()
void onDestroy()

All of these methods are hooks that you can override to do appropriate work when the state changes. All activities must implement onCreate() to do the initial setup when the object is first instantiated. Many will also implement onPause() to commit data changes and otherwise prepare to stop interacting with the user.

Taken together, these seven methods define the entire lifecycle of an activity. There are three nested loops that you can monitor by implementing them:

  • The entire lifetime of an activity happens between the first call to onCreate() through to a single final call to onDestroy(). An activity does all its initial setup of "global" state in onCreate(), and releases all remaining resources in onDestroy(). For example, if it has a thread running in the background to download data from the network, it may create that thread in onCreate() and then stop the thread in onDestroy().
  • The visible lifetime of an activity happens between a call to onStart() until a corresponding call to onStop(). During this time, the user can see the activity on-screen, though it may not be in the foreground and interacting with the user. Between these two methods, you can maintain resources that are needed to show the activity to the user. For example, you can register a BroadcastReceiver in onStart() to monitor for changes that impact your UI, and unregister it in onStop() when the user can no longer see what you are displaying. The onStart() and onStop() methods can be called multiple times, as the activity alternates between being visible and hidden to the user.

  • The foreground lifetime of an activity happens between a call to onResume() until a corresponding call to onPause(). During this time, the activity is in front of all other activities on screen and is interacting with the user. An activity can frequently transition between the resumed and paused states — for example, onPause() is called when the device goes to sleep or when a new activity is started, onResume() is called when an activity result or a new intent is delivered. Therefore, the code in these two methods should be fairly lightweight.

The following diagram illustrates these loops and the paths an activity may take between states. The colored ovals are major states the activity can be in. The square rectangles represent the callback methods you can implement to perform operations when the activity transitions between states.

State diagram for an Android activity lifecycle.

The following table describes each of these methods in more detail and locates it within the activity's overall lifecycle:

Method Description Killable? Next
onCreate() Called when the activity is first created. This is where you should do all of your normal static set up — create views, bind data to lists, and so on. This method is passed a Bundle object containing the activity's previous state, if that state was captured (see Saving Activity State, later).

Always followed by onStart().

No onStart()
    onRestart() Called after the activity has been stopped, just prior to it being started again.

Always followed by onStart()

No onStart()
onStart() Called just before the activity becomes visible to the user.

Followed by onResume() if the activity comes to the foreground, or onStop() if it becomes hidden.

No onResume()
or
onStop()
    onResume() Called just before the activity starts interacting with the user. At this point the activity is at the top of the activity stack, with user input going to it.

Always followed by onPause().

No onPause()
onPause() Called when the system is about to start resuming another activity. This method is typically used to commit unsaved changes to persistent data, stop animations and other things that may be consuming CPU, and so on. It should do whatever it does very quickly, because the next activity will not be resumed until it returns.

Followed either by onResume() if the activity returns back to the front, or by onStop() if it becomes invisible to the user.

Yes onResume()
or
onStop()
onStop() Called when the activity is no longer visible to the user. This may happen because it is being destroyed, or because another activity (either an existing one or a new one) has been resumed and is covering it.

Followed either by onRestart() if the activity is coming back to interact with the user, or by onDestroy() if this activity is going away.

Yes onRestart()
or
onDestroy()
onDestroy() Called before the activity is destroyed. This is the final call that the activity will receive. It could be called either because the activity is finishing (someone called finish() on it), or because the system is temporarily destroying this instance of the activity to save space. You can distinguish between these two scenarios with the isFinishing() method. Yes nothing

Note the Killable column in the table above. It indicates whether or not the system can kill the process hosting the activity at any time after the method returns, without executing another line of the activity's code. Three methods (onPause(), onStop(), and onDestroy()) are marked "Yes." Because onPause() is the first of the three, it's the only one that's guaranteed to be called before the process is killed — onStop() and onDestroy() may not be. Therefore, you should use onPause() to write any persistent data (such as user edits) to storage.

Methods that are marked "No" in the Killable column protect the process hosting the activity from being killed from the moment they are called. Thus an activity is in a killable state, for example, from the time onPause() returns to the time onResume() is called. It will not again be killable until onPause() again returns.

As noted in a later section, Processes and lifecycle, an activity that's not technically "killable" by this definition might still be killed by the system — but that would happen only in extreme and dire circumstances when there is no other recourse.

Saving activity state

When the system, rather than the user, shuts down an activity to conserve memory, the user may expect to return to the activity and find it in its previous state.

To capture that state before the activity is killed, you can implement an onSaveInstanceState() method for the activity. Android calls this method before making the activity vulnerable to being destroyed — that is, before onPause() is called. It passes the method a Bundle object where you can record the dynamic state of the activity as name-value pairs. When the activity is again started, the Bundle is passed both to onCreate() and to a method that's called after onStart(), onRestoreInstanceState(), so that either or both of them can recreate the captured state.

Unlike onPause() and the other methods discussed earlier, onSaveInstanceState() and onRestoreInstanceState() are not lifecycle methods. They are not always called. For example, Android calls onSaveInstanceState() before the activity becomes vulnerable to being destroyed by the system, but does not bother calling it when the instance is actually being destroyed by a user action (such as pressing the BACK key). In that case, the user won't expect to return to the activity, so there's no reason to save its state.

Because onSaveInstanceState() is not always called, you should use it only to record the transient state of the activity, not to store persistent data. Use onPause() for that purpose instead.

Coordinating activities

When one activity starts another, they both experience lifecycle transitions. One pauses and may stop, while the other starts up. On occasion, you may need to coordinate these activities, one with the other.

The order of lifecycle callbacks is well defined, particularly when the two activities are in the same process:

  1. The current activity's onPause() method is called.
  2. Next, the starting activity's onCreate(), onStart(), and onResume() methods are called in sequence.
  3. Then, if the starting activity is no longer visible on screen, its onStop() method is called.

Service lifecycle

A service can be used in two ways:

  • It can be started and allowed to run until someone stops it or it stops itself. In this mode, it's started by calling Context.startService() and stopped by calling Context.stopService(). It can stop itself by calling Service.stopSelf() or Service.stopSelfResult(). Only one stopService() call is needed to stop the service, no matter how many times startService() was called.
  • It can be operated programmatically using an interface that it defines and exports. Clients establish a connection to the Service object and use that connection to call into the service. The connection is established by calling Context.bindService(), and is closed by calling Context.unbindService(). Multiple clients can bind to the same service. If the service has not already been launched, bindService() can optionally launch it.

The two modes are not entirely separate. You can bind to a service that was started with startService(). For example, a background music service could be started by calling startService() with an Intent object that identifies the music to play. Only later, possibly when the user wants to exercise some control over the player or get information about the current song, would an activity establish a connection to the service by calling bindService(). In cases like this, stopService() will not actually stop the service until the last binding is closed.

Like an activity, a service has lifecycle methods that you can implement to monitor changes in its state. But they are fewer than the activity methods — only three — and they are public, not protected:

void onCreate()
void onStart(Intent intent)
void onDestroy()

By implementing these methods, you can monitor two nested loops of the service's lifecycle:

  • The entire lifetime of a service happens between the time onCreate() is called and the time onDestroy() returns. Like an activity, a service does its initial setup in onCreate(), and releases all remaining resources in onDestroy(). For example, a music playback service could create the thread where the music will be played in onCreate(), and then stop the thread in onDestroy().
  • The active lifetime of a service begins with a call to onStart(). This method is handed the Intent object that was passed to startService(). The music service would open the Intent to discover which music to play, and begin the playback.

    There's no equivalent callback for when the service stops — no onStop() method.

The onCreate() and onDestroy() methods are called for all services, whether they're started by Context.startService() or Context.bindService(). However, onStart() is called only for services started by startService().

If a service permits others to bind to it, there are additional callback methods for it to implement:

IBinder onBind(Intent intent)
boolean onUnbind(Intent intent)
void onRebind(Intent intent)

The onBind() callback is passed the Intent object that was passed to bindService and onUnbind() is handed the intent that was passed to unbindService(). If the service permits the binding, onBind() returns the communications channel that clients use to interact with the service. The onUnbind() method can ask for onRebind() to be called if a new client connects to the service.

The following diagram illustrates the callback methods for a service. Although, it separates services that are created via startService from those created by bindService(), keep in mind that any service, no matter how it's started, can potentially allow clients to bind to it, so any service may receive onBind() and onUnbind() calls.

State diagram for Service callbacks.

Broadcast receiver lifecycle

A broadcast receiver has single callback method:

void onReceive(Context curContext, Intent broadcastMsg)

When a broadcast message arrives for the receiver, Android calls its onReceive() method and passes it the Intent object containing the message. The broadcast receiver is considered to be active only while it is executing this method. When onReceive() returns, it is inactive.

A process with an active broadcast receiver is protected from being killed. But a process with only inactive components can be killed by the system at any time, when the memory it consumes is needed by other processes.

This presents a problem when the response to a broadcast message is time consuming and, therefore, something that should be done in a separate thread, away from the main thread where other components of the user interface run. If onReceive() spawns the thread and then returns, the entire process, including the new thread, is judged to be inactive (unless other application components are active in the process), putting it in jeopardy of being killed. The solution to this problem is for onReceive() to start a service and let the service do the job, so the system knows that there is still active work being done in the process.

The next section has more on the vulnerability of processes to being killed.

Processes and lifecycles

The Android system tries to maintain an application process for as long as possible, but eventually it will need to remove old processes when memory runs low. To determine which processes to keep and which to kill, Android places each process into an "importance hierarchy" based on the components running in it and the state of those components. Processes with the lowest importance are eliminated first, then those with the next lowest, and so on. There are five levels in the hierarchy. The following list presents them in order of importance:

  1. A foreground process is one that is required for what the user is currently doing. A process is considered to be in the foreground if any of the following conditions hold:
    • It is running an activity that the user is interacting with (the Activity object's onResume() method has been called).
    • It hosts a service that's bound to the activity that the user is interacting with.

    • It has a Service object that's executing one of its lifecycle callbacks (onCreate(), onStart(), or onDestroy()).

    • It has a BroadcastReceiver object that's executing its onReceive() method.

    Only a few foreground processes will exist at any given time. They are killed only as a last resort — if memory is so low that they cannot all continue to run. Generally, at that point, the device has reached a memory paging state, so killing some foreground processes is required to keep the user interface responsive.

  2. A visible process is one that doesn't have any foreground components, but still can affect what the user sees on screen. A process is considered to be visible if either of the following conditions holds:

    • It hosts an activity that is not in the foreground, but is still visible to the user (its onPause() method has been called). This may occur, for example, if the foreground activity is a dialog that allows the previous activity to be seen behind it.
    • It hosts a service that's bound to a visible activity.

    A visible process is considered extremely important and will not be killed unless doing so is required to keep all foreground processes running.

  3. A service process is one that is running a service that has been started with the startService() method and that does not fall into either of the two higher categories. Although service processes are not directly tied to anything the user sees, they are generally doing things that the user cares about (such as playing an mp3 in the background or downloading data on the network), so the system keeps them running unless there's not enough memory to retain them along with all foreground and visible processes.

  4. A background process is one holding an activity that's not currently visible to the user (the Activity object's onStop() method has been called). These processes have no direct impact on the user experience, and can be killed at any time to reclaim memory for a foreground, visible, or service process. Usually there are many background processes running, so they are kept in an LRU (least recently used) list to ensure that the process with the activity that was most recently seen by the user is the last to be killed. If an activity implements its lifecycle methods correctly, and captures its current state, killing its process will not have a deleterious effect on the user experience.

  5. An empty process is one that doesn't hold any active application components. The only reason to keep such a process around is as a cache to improve startup time the next time a component needs to run in it. The system often kills these processes in order to balance overall system resources between process caches and the underlying kernel caches.

Android ranks a process at the highest level it can, based upon the importance of the components currently active in the process. For example, if a process hosts a service and a visible activity, the process will be ranked as a visible process, not a service process.

In addition, a process's ranking may be increased because other processes are dependent on it. A process that is serving another process can never be ranked lower than the process it is serving. For example, if a content provider in process A is serving a client in process B, or if a service in process A is bound to a component in process B, process A will always be considered at least as important as process B.

Because a process running a service is ranked higher than one with background activities, an activity that initiates a long-running operation might do well to start a service for that operation, rather than simply spawn a thread — particularly if the operation will likely outlast the activity. Examples of this are playing music in the background and uploading a picture taken by the camera to a web site. Using a service guarantees that the operation will have at least "service process" priority, regardless of what happens to the activity. As noted in the Broadcast receiver lifecycle section earlier, this is the same reason that broadcast receivers should employ services rather than simply put time-consuming operations in a thread.

'old > App' 카테고리의 다른 글

<activity>__AndroidManifest.xml  (0) 2010.02.04
<action>__AndroidManifest.xml  (0) 2010.02.04
The AndroidManifest.xml File  (0) 2010.02.04
Posted by jazzlife
,